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Outline

1. Why conformal Regge theory?  
-Conformal bootstrap and large spin physics 
-AdS/CFT and bulk locality

2. CFT Froissart-Gribov formula 
-Why operators are analytic in spin 
-New ingredients in CFT (ANEC&bound on chaos)

3. Applications:  
-operators of large spin 
-CFTs dual to gravity: causality&bulk locality  

The aim of this talk will be to present a formula…



Conformal bootstrap
• Input: Operator Product Expansion 

• Converges in finite radius

• In CFT, operator have scaling exponents:  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• Dynamics: Crossing Equation
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Why is it constraining?
Imagine points are slightly closer to one limit:  

Naively, no solution!!  (since f2 ’s are positive)
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Why is it constraining?
Imagine points are slightly closer to one limit:  

Naively, no solution!!  (since f2 ’s are positive)

But: first few terms go the other way: 
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Numerical exclusion plots:  
the 3D Ising CFT
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Figure 5: Same as Figs. 3, 4, but imposing the extra constraints �
"

0 � {3, 3.4, 3.8}.
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Allowed

Lightest  
(Z2 odd)

Lightest  
Z2 even

(next-to-lightest  
Z2 even)

[From: El-Showk,Paulos,Poland,  
Rychkov,Simmons-Duffin&Vichi ’12]



As one learns more about next-to-lightest op,  
an island is carved out
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…

The `tip’ which can’t be excluded,
must be the theory we’re looking for!
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We find that the resulting Z
2

-even spectrum shows a dramatic transition in the vicinity
of �

�

= 0.518154(15), giving a high precision determination of the leading critical exponent
⌘. Focusing on the transition region, we are able to extract precise values of the first
several Z

2

-even operator dimensions and of their OPE coe�cients, see Table 1. We also
give reasonable estimates for the locations of all low dimension (� . 13) scalar and spin 2
operators in the Z

2

-even spectrum.

spin & Z
2

name � OPE coe�cient

` = 0, Z
2

= � � 0.518154(15)
` = 0, Z

2

= + ✏ 1.41267(13) f 2

��✏

= 1.10636(9)
✏0 3.8303(18) f 2

��✏

0 = 0.002810(6)
` = 2, Z

2

= + T 3 c/c
free

= 0.946534(11)
T 0 5.500(15) f 2

��T

0 = 2.97(2) ⇥ 10�4

Table 1: Precision information about the low-lying 3d Ising CFT spectrum and OPE
coe�cients extracted in this work. See sections 3.4 and 3.6 for preliminary information about
higher-dimension ` = 0 and ` = 2 operators. See also section 4 for a comparison to results by
other techniques.

The transition also shows the highly intriguing feature that certain operators disappear
from the spectrum as one approaches the 3d Ising point. This decoupling of states gives
an important characterization of the 3d Ising CFT. This is similar to what occurs in the
2d Ising model, where the decoupling of operators can be rigorously understood in terms of
degenerate representations of the Virasoro symmetry. To better understand this connection,
we give a detailed comparison to the application of our c-minimization algorithm in 2d,
where the exact spectrum of the 2d Ising CFT and its interpolation through the minimal
models is known. We conclude with a discussion of important directions for future research.

2 A Conjecture for the 3d Ising Spectrum

Consider a 3d CFT with a scalar primary operator � of dimension �
�

. In [1], we studied
the constraints of crossing symmetry and unitarity on the four-point function h����i.
From these constraints, we derived universal bounds on dimensions and OPE coe�cients of
operators appearing in the � ⇥� OPE. Figure 1, for example, shows an upper bound on the
dimension of the lowest-dimension scalar in � ⇥ � (which we call ✏), as a function of �

�

.
This bound is a consequence of very general principles - conformal invariance, unitarity, and
crossing symmetry - yet it has a striking “kink” near (�

�

, �
✏

) t (0.518, 1.412), indicating
that these dimensions have special significance in the space of 3d CFTs. Indeed, they are
believed to be realized in the 3d Ising CFT.

The curves in Figure 1 are part of a family of bounds labeled by an integer N (defined
in section 2.3), which get stronger as N increases. It appears likely that the 3d Ising CFT

3

[El-Showk,Paulos,Poland,  
Rychkov,Simmons-Duffin&Vichi ’14]

Computer algorithm to solve multiple inequalities:  
semidefinite programming  

Leads to precise, quantitative critical exponents,  
in various CFTs.  Ex: 3D Ising:

[Poland,Simmons-Duffin&Vichi ’11]



Why CFTs?
• CFTs are interesting:  

- Critical exponents in phase transitions 
- Many interesting theories are near-conformal  
  (e.g. QCD at high energies)  
- Any theory of gravity in AdS is dual to a CFT

• CFTs are simpler:  
- 4-pt function depends on only 2 cross-ratios 
 (compare with 6 distances:             !)  
- total derivatives not independent operators

10

x

2
ij/`

2
0
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where we used equation (5.48) for the Jacobian @h
@`

that relates f��[��]
0

to ���[��]
0

. The

actual operator dimensions are determined by solving h� 2h� � �(h) = 0, 2, 4, . . . .

A comparison between the above formula and numerics for ⌧
[��]

0

= 2��+2�
[��]

0

is shown
in figure 7. The discrepancy between analytics and numerics is 3 ⇥ 10�3 and 5 ⇥ 10�4 for
spins ` = 2, 4, respectively, and ⇠ 5 ⇥ 10�5 for ` > 4. Including additional higher-twist
operators (primaries or descendants) in (6.1) and (6.2) does not improve the fit for low
spins, and barely a↵ects it for high spins.

10 20 30 40
h

1.00

1.01

1.02

1.03

1.04
τ

τ[σσ]0(h)

Figure 7: A comparison between the analytical prediction (6.5) (blue curve) and numerical
data (blue dots) for ⌧

[��]
0

. The two agree with accuracy 3 ⇥ 10�3 and 5 ⇥ 10�4 for spins
` = 2, 4, respectively, and ⇠ 5⇥ 10�5 for ` > 4. The grey dashed line is the asymptotic value
⌧ = 2��. The curve (2.3) from [1] looks essentially the same.

6.1.1 Di↵erences from [1]

Let us comment briefly on the (inconsequential) di↵erences between the above calculation
and the series (2.3) computed in [1]. Firstly, we have not included descendants of ✏, T ,

namely terms of the form W (0)����
O,m and V (0)����

O,m with m � 1, whereas [1] included descen-
dants at first order in z. This is because it doesn’t make sense to include level-1 descendants
of ✏, T without also including the double-twist operators [✏T ]

0

, [TT ]
0

, which contribute at
the same order in the large-h expansion. Also, because we organize everything as a series in
y instead of z, the contributions of descendants will di↵er somewhat (though the sum over

32

[Plot from Simmons-Duffin ’16]

stress 
tensor

j +�

2

= �� j

Empirical observation: operators lie in smooth families

Analytic 1/j expansion
[Alday&Zhiboedov ’15]



Why Conformal Regge Theory?
To explain why operators organize into families 
(‘Regge trajectories’)  
 
Quantitatively,  a Froissart-Gribov inversion formula:

        In AdS/CFT, this formula will  
           know about bulk locality !

f2
OOO0 =

Z
dzdz̄ (. . .)“ImM”



Second motivation
Conjecture:  
   Any large-N CFT with a large gap of operator  
  dimension has an AdS dual, down to lengths 

[Heemskerk,Penedones,Polchinski& Sully ’09]
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They proved:  solutions to crossing in large-N CFTs w/gap 
              ⟷ local interactions in AdS

But why are higher-dim interactions suppressed
by powers of Δgap?

`AdS/�gap



Effective field theory in AdS:  
 
 

In string theory, for example, 

Suppression would be clear from a ‘dispersion relation in 
the flat space limit of AdS’:

Sigh, if only a CFT formula existed that read like this!

M(s) ⇠
Z 1

M2

ds0

s0 � s
ImM(s0) ⇠ 1

M2
+

s

M4
+ . . .

1

M2
+

s

M4
+ . . .

“
�1

s�M2
”

M ⇠ Mstring � 1/RAdS



Why Conformal Regge Theory?
To explain why operators organize into families 
(‘Regge trajectories’)  
 
Quantitatively,  a Froissart-Gribov inversion formula:

          In AdS/CFT, this formula will  
            know about bulk locality !

f2
OOO0 =

Z
dzdz̄ (. . .)“ImM”



Outline

1. Why conformal Regge theory? 
-Conformal bootstrap and large spin physics 
-AdS/CFT and bulk locality

2. CFT Froissart-Gribov formula 
-Why operators are analytic in spin 
-New ingredients in CFT (ANEC&bound on chaos)

3. Applications:  
-operators of large spin 
-CFTs dual to gravity: causality&bulk locality  

✔



Why is physics 
analytic in spin?

Short answer:

17

because Euclidean physics has to resum into something 
sensible at high energies



• Toy model: single-variable power series

• Assume:  
 - f(x) is analytic in cut plane C\[1,∞)  
 - |f(x)/x| → 0 at infinity

   ⇒ What does this tell us about the fj’s?

18

f(x) =
1X

j=1

fjx
j

(large x=  
‘large energy’)

(‘Euclidean OPE’)



• Q: How to extract fj from f(x) ?

• A: Cauchy

19

1

fj(x) =
1

2⇡i

I
dx

x

x

�j
f(x)

x



• Q: How to extract fj from f(x) ?

• A: Cauchy

20

1
x

Deform the contour:

⇒ fj =
1

2⇡i

Z 1

1

dx

x

x

�j Disc f(x) (j≥1)



Basic inversion formula

(Sanity check: 

fj =

Z 1

1

dx

x

x

�j Disc f(x)

2⇡i

f(x) = � log(1� x) ) Disc f(x)
2⇡i = 1

) fj = 1/j ✔
)

⇒ Good high-energy behavior leads to:  
   -Taylor coefficients are analytic for Re[j]≥1 !  
   -Determined by imaginary part of amplitude



Froissart-Gribov  
formula

• Explains why S-matrix can be decomposed 
into analytic-in-spin partial waves

• Foundation of Regge theory

inverts Legendre polynomials:

, a(t)j =

Z 1

⌘0

d⌘Qj(cosh ⌘)DiscA(cosh(⌘))

A(s, cos ✓) =
1X

j=0

aj(s)Pj(cos ✓)

+(�1)j [t-channel]
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[from Donnachie, Dosch,Landshoff&Nachtmann]

t<0 obtained from                  data, (@3.6,5.85&13.3GeV/c)⇡�p ! ⇡0n

Classic application to QCD

j
max

(t)

j=boost j=rotation
A / sjmax

(t)

⇢



Suppose we had a Froissart-Gribov formula in CFT

What should be ‘        ’ ?

24

ImM



• We consider 4-point correlator in CFTd

x

x
x

x 4

13
2

• Symmetrical param. within Rindler wedges:
�⇢2 = ⇢1 = 1
�⇢3 = ⇢4 ⌘ ⇢

⇢time
⇢̄



• We consider 4-point correlator in CFTd

x

x
x

x 4

13
2

• at small   , s-channel OPE:

�⇢2 = ⇢1 = 1
�⇢3 = ⇢4 ⌘ ⇢

⇢

G(⇢, ⇢̄) =
X

j,�

cj,�⇢
��j

2 ⇢̄
�+j

2

1

2

3

4

=
j,�

time ⇢

⇢̄
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Section 6 contains concluding remarks. A lengthy appendix A details formulas for handling

conformal blocks in various dimensions, while appendix B details tests in the 2D Ising model.

2 Review and main ingredients

2.1 Four-point correlator and conformal blocks

We will be interested in the correlator of four conformal primary operators (which we will

take to be scalars for simplicity). Up to an overall factor, it is a function of cross-ratios only:

hO
4

(x
4

) · · · O
1

(x
1

)i = 1

(x2
12

)
1
2 (�1+�2)(x2

34

)
1
2 (�3+�4)

✓
x2
14

x2
24

◆
a

✓
x2
14

x2
13

◆
b

G(z, z̄) (2.1)

where here and below a = 1

2

(�
2

��
1

), b = 1

2

(�
3

��
4

), and z, z̄ are conformal cross-ratios

zz̄ =
x2
12

x2
34

x2
13

x2
24

, (1� z)(1� z̄) =
x2
23

x2
14

x2
13

x2
24

. (2.2)

The operator product expansion (OPE) produces a series expansion around the limit where

two points coincide. The expansion in the s-channel (between 1 and 2) reads

G(z, z̄) =
X

J,�

f
12Of43O G

J,�

(z, z̄) (2.3)

where the sum runs over the spin J and dimension � of the exchanged primary operator

O. The conformal blocks G are special functions which resum derivatives (descendants) of

O. They are eigenfunctions of the quadratic and quartic Casimir invariants (A.2) of the

conformal group. It will be useful to use blocks normalized so that, at small z ⌧ z̄:

G
J,�

(z, z̄) ! z
��J

2 z̄
�+J

2 (0 ⌧ z ⌧ z̄ ⌧ 1) . (2.4)

The same normalization was used in [11]. The angular dependence when z and z̄ are both

small but of comparable magnitude can be expressed in terms of Gegenbauer polynomials, see

eq. (A.8). In even spacetime dimensions, the conformal blocks admit closed form expressions

in terms of hypergeometric functions, for example

G
J,�

(z, z̄) =
k
��J

(z)k
�+J

(z̄) + k
�+J

(z)k
��J

(z̄)

1 + �
J,0

(d = 2) , (2.5)

G
J,�

(z, z̄) =
zz̄

z̄ � z

⇥
k
��J�2

(z)k
�+J

(z̄)� k
�+J

(z)k
��J�2

(z̄)
⇤

(d = 4) . (2.6)

In both expressions, k
�

denotes the hypergeometric function

k
�

(z) = z̄�/2
2

F
1

(�/2 + a,�/2 + b,�, z) . (2.7)

Since four points can always be mapped to a plane via a conformal transformation, z

and z̄ can be viewed as coordinates on a two-dimensional plane. In fact it will be convenient

– 5 –

(one normally replaces power series by ‘blocks’  
which include derivatives of primary operators:

k�(z) = z�/22F1(�/2,�/2,�, z) z =
4⇢

(1 + ⇢)2

This will be important below,  
but Taylor series will suffice for now.)

where



• Take x41 and x23 time-like:

• Certainly looks like a ‘scattering amplitude’

• Claim:

28

x

xx

x 4

13

2

S ⌘ G

GEucl
satisfies |S|  1



• s-channel OPE diverges upon entering light-cone  

• Use OPE around t-channel (timelike one)

• For timelike,         , only get extra phases:

29

[Hogervorst&Rychkov ’13]
⇢ > 1

proof

G(⇢, ⇢̄) =
X

j,�

cj,�

✓
1�p

⇢

1 +
p
⇢

◆��j ✓1�
p
⇢̄

1 +
p
⇢̄

◆�+j

��G(⇢, ⇢̄)
��
=

��
X

(positive)ei⇡(��j)
��


X

(positive) = G(1/⇢, ⇢̄) ⌘ GEucl



This means that an ‘imaginary part’ is positive:  

Since S contains the ‘1’, this is double discontinuity:

S = 1 + iM
|S|  1

) ImM > 0

⌘ dDiscG

GEucl / 1

G
above

/ 1� iM⇤
G

below

/ 1 + iM

) 2ImM / 2G
Eucl

�G
above

�G
below

> 0



Writing M from Im M: ‘dispersion relation’

This doesn’t quite work because analytic structure 
in coordinate space is weird

For example, fix      :

w

⇢⇢̄

ImM

1/��
xxxx

�1/� ��

dDiscG�dDiscG

⇢ = �w

⇢̄ = �/w



The dragons shrink in the Regge limit

1/�1/��

w

w ! 1

This corresponds to a boosted coordinates:

⇢

⇢̄

⇢ = �w

⇢̄ = �/w



Regge limit dispersion relation:

33

bounded
(t- OPE)

bounded
(u- OPE)

 approaches 
a constant

w

(use both OPE)

x

1/�1/��

[Hartman,Kundu&Tajdini ’16]

M(E) = C +
1

⇡

Z 1

�1

dE0ImM(E0)

E � E0



Some implications of the dispersion relation:  

Look in upper-half-plane:  
 
 
 
⇒Proof of ANEC:  
 

(ANEC was proved just a few month earlier using 
entanglement entropy inequalities)

ImM(x+ iy) =

Z
y dx

0 ImM(x0)

(x0 � x)2 + y

2
> 0

M(w) ⇡ wh
Z 1

�1
dx

+
T++i34 ) h

Z
dx

+
T++i> 0

[Hartman,Kundu&Tajdini ’16]

[Faulkner,Leigh,Parrikar&Wang, ’16]



Derivative of dispersion relation:

(y@

y

� 1)

h
log ImM(x+ iy)

i
= �2

R
dx

0
y

2 ImM(x0)
((x0�x)2+y

2)2R
dx

0 ImM(x0)
(x0�x)2+y

2

 0

⇒ can’t grow faster than linear in energy!

when converted to Rindler time w=et/(2𝜋T), this is the  
CFT case of the ‘bound on chaos’ (Lyapunov             )� < 2⇡T

[Maldacena,Shenker&Stanford ‘15]

This proves that the Pomeron intercept          in CFTj  2

⇒ Dispersion relation encodes much nice physics!



Because of the ‘dragons’ at low-energy, this dispersion 
relation doesn’t fully reconstruct the correlator

Following the Froissart-Gribov logic, we’ll instead 
obtain a dispersion relation for OPE coefficients

36



Froissart-Gribov:  how to invert

37

f(cos ✓) =
1X

j=0

fj cos(j✓)

A: Start from Euclidean inverse, use variable: w = ei✓

=

I
dw

w
(wj

+ w�j
)f(cos ✓)

fj ⇠
Z 2⇡

0
d✓cos(j✓)f(cos ✓)

?



w
|w| = 1

t-channel  
cut

u-channel  
cut

Trick is to close the contour on cut:

f (t)
j ⇠

Z 1

⌘0

d⌘ e�j⌘
Disc f(cosh(⌘))

+(�1)j [u-channel]

Result: integral over cut



[Costa,Goncalves&Penedones’12]

• Actually, we first have to make ∆ continuous:  
 
 
 

= single-valued, needed for self-adjointness of Casimir

G(z, z̄) = �12�34 +
1X

j=0

Z d/2+i1

d/2�i1

d�

2⇡i
c(j,�)Fj,�(z, z̄).

Fj,� = gj,� + gj,d��

[Simmons-Duffin ’12]• Contour like a Mellin transform

• OPE reproduced if c has correct poles:

c(j,�0) ⇡
f2
OO!j,�

���0

CFT steps are the same: Euclidean OPE:

✓
[see also: Mazac’16; 

Hogervorst&van Rees ’17, Gadde ‘17]

G(z, z̄) =
X

j,�

f2
j,�Gj,�(z, z̄)



• To extract the coefficients, invoke orthogonality 
and integrate against block (+shadow):

• Still a Euclidean integral: integer spin,  
not yet what we want

40

step 1. Invert the Euclidean OPE (SO(d+1,1)):

c(j,�) = #(j,�)

Z
d2z µ(z, z̄)G(z, z̄)Fj,�(z, z̄) .



• Contour deformation. Use clever variables
step 2

z =
4⇢

(1 + ⇢)2
w =

p
⇢/⇢̄ = ei✓

Z
d2z !

Z 1

0
d|⇢|

I
dw

w
w

|w| = 1

t-channel  
cut

u-channel  
cut

[Hogervorst&Rychkov ’13]



The tricky part is to split the block(+shadow)  
into bits that are nice in individual Regge limits:

42

⇠ wj

(w ! 0)

= wj + w�j

That is, we want:
Fj,�(z, z̄) = F (+)

j,� + F (�)
j,�

⇠ w�j

(w ! 1)

2 cos(j✓) = eij✓ + e�ij✓



• tricky because there are 8 basic solutions to 
conformal Casimirs diff eqs.: (quadratic and quartic)

• Solutions related by symmetries:

• Only 2 are nice (convergent) in Regge limit:

• So we have 4 parameters and 8 constraints
43

which are the eigenvalues of the following di↵erential operators:

C
2

= D
z

+D
z̄

+ (d� 2)
zz̄

z � z̄
[(1� z)@

z

� (1� z̄)@
z̄

] ,

C
4

=

✓
zz̄

z � z̄

◆
d�2

(D
z

�D
z̄

)

✓
zz̄

z � z̄

◆
2�d

(D
z

�D
z̄

) .
(A.2)

Here

D
z

= z2@
z

(1� z)@
z

� (a+ b)z2@
z

� abz (A.3)

with a = �1

2

�
12

, b = 1

2

�
34

.

Since we will be interested in various analytic continuations, it is useful to consider the

most general solution to these equations. Let us also assume that j and � are generic non-

integer numbers (such that j ±� are also non-integer) – the non-generic cases will then be

obtained as limits. From the di↵erential equations, it is easy to see that the solutions can

then be labelled in terms of their exponents in the regime 0⌧ z ⌧ z̄ ⌧ 1:

gpure
j,�

= z
��j
2 z̄

�+j
2 ⇥ (1 + integer powers of z/z̄, z̄) . (A.4)

There are in fact eight independent solutions, which correspond to the fact that the Casimir

eigenvalues (A.1) are invariant under the three permutations:

j !2� d� j, � ! d��, � ! 1� j . (A.5)

A.1 Expansion around the origin

To make contact with the conformal blocks G
j,�

used in the main text, we note that in the

limit zz̄ ! 0 the dependence on the ratio z/z̄ is controlled by the Gegenbauer di↵erential

equation with x = cos ✓ = 1

2

(
p
z/z̄ +

p
z̄/z):

gpure
j,�

= (zz̄)
�
2 (f

j

(x) +O(zz̄)),
⇥
(1� x2)@2

x

� (d� 1)x@
x

+ j(j + d� 2)
⇤
f
j

(x) = 0 .

(A.6)

This generalizes to d-dimension the spherical harmonics, e.g. Legendre polynomials. This

is physically unsurprising since in Euclidean kinematics x is the cosine of an angle. Our

blocks have the asymptotics where the (rescaled) Gegenbauer polynomial is normalized so

that C̃
j

(1) = 1:

G
j,�

= (zz̄)�/2C̃
j

(x) + . . . ,

C̃
j

(x) ⌘ �(j + 1)�(d� 2)

�(j + d� 2)
C

d/2�1

j

(x) =
2

F
1

�� j, j + d� 2, d�1

2

, 1�x

2

�
.

(A.7)

In Lorentzian kinematics x is better thought as the cosh of a boost and the two possible

large-x exponents are xj and x�j�d+2. Working out the asymptotics of the C̃
j

we thus get

G
j,�

(z, z̄) =
2d�3�(d�1

2

)p
⇡

"
�(d�2

2

+ j)

�(d� 2 + j)
gpure
j,�

(z, z̄) +
�(�d�2

2

� j)

�(�j) gpure�j�d+2,�

(z, z̄)

#
. (A.8)

– 7 –

(0 ⌧ z ⌧ z̄ ⌧ 1)

gpure�+1�d,j+d�1, gpure1��,j+d�1 ⇠ (zz̄)j/2

gpurej,� (z, z̄) ⇠ z
��j

2 z̄
�+j

2



• The constraints are on different sheets:

x xxx x x

Regge
-1

1, these two solutions mix. The monodromy, which can be worked out from (A.18), gives

gpure
j,�

(z, z̄) = gpure
j,�

(z, z̄)

"
1� 2i

e�i⇡(a+b)

sin(⇡�)
sin(⇡(�/2 + a)) sin(⇡(�/2 + b))

#

� gpure
1��,1�j

(z, z̄) 2⇡i
e�i⇡(a+b)�(�+ j � 1)�(�+ j)

�
�
�+j

2

� a
�
�
�
�+j

2

+ a
�
�
�
�+j

2

� b
�
�
�
�+j

2

+ b
� .

(A.19)

It is possible to analyze the monodromy as z goes around 1 using the same formula. But

since the blocks gpure are normalized in the limit 0 ⌧ z ⌧ z̄ ⌧ 1, this requires an extra step

to relate them to 0 ⌧ z̄ ⌧ z ⌧ 1 pure-power solutions. By analyzing the hypergeometric

function (A.9) we find the following connection formula, if z passes to the right of z̄ in a

counter-clockwise fashion (so that x goes counter-clockwise around 1):

gpure
J,�

(z, z̄) = gpure�J�d+2,�

(z̄, z)
e�i⇡

d�2
2 �(�J � d�2

2

)�(1� J � d�2

2

)

�(�J)�(3� J � d)
+gpure

J,�

(z̄, z)
ei⇡J sin(⇡ d�2

2

)

sin
�
⇡(J + d�2

2

)
� .

(A.20)

Applying (A.20) followed by (A.19) and then (A.20) again gives the monodromy around z = 1.

(We caution the reader that the limit of integer J should be approached with care in this

formula, since the large solution f
J

(x) diverges in this limit.)

For single-valued combinations, the two ways of reaching the Regge sheet by rotating

either z or z̄ counter-clockwise around 1 should give the same result. The preceding two

formulas can therefore be used to verify single-valuedness of the combination F
J,�

in eq. (3.2).

The poles:

Res
�=j+d�2�m

G
J,�

(z, z̄) =
(�1)m�(1 + a+ m

2

)�(1 + b+ m

2

)

m!(m+ 1)!�(a� m

2

)�(b� m

2

)
G

j�1�m,j+d�1

(z, z̄), (A.21)

where m = 0, 1, 2, . . .1

A.3 Cross-channel expansions

For the cross-channel expansion we need to know the blocks as a function of z for z̄ ⇡ 1.

Writing the blocks as a sum of powers,

gpure
j,�

(z, z̄) =
1X

m=0

F
p+m

(z)(1� z̄)p+m (A.22)

we find that the exponent can take on two possibilities, p = 0,�a � b, which are the zero-

modes of D
z̄

, which acts as a lowering operator on m. The functions F
p+m

(z) are to be

determined using the Casimir equations. This is actually subtle, since in this limit they mix

1
Note that for the stress tensor block, j = 2,m = 0, the residue vanishes since it couples only to operators

of the same dimension: a = b = 0.

– 10 –

(all 8 solutions mix  
under continuation: )

z, z̄ ! 0

Euclidean
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4 parameters, 8 constraints,  
fingers crossed…
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system is overconstrained, since a solution is at best expected when the spin is an integer. It

is still not obvious whether it should have any solution in that case, but the physical analogy

between the correlator and the S-matrix suggests that a solution should exist. Indeed, a

solution does exist!

e+,1

J,�

= 1

4


J+�

e�i⇡(a+b) , e+,2

J,�

=
1

4

J+�

�
�
d

2

��
�
�(�� 1)

�
�
�� d

2

�
�(d��� 1)

e�i⇡(a+b) . (3.18)

Pleasantly, this is precisely such that eq. (3.16) organizes into a regular block G
�+1�d,J+d�1

(note the interchange of dimension and spin compared to the usual blocks.) Also, most of

the complicated factors from N(J,�) have canceled out. Furthermore, we find that, after

adding the complex conjugate solution for e�,1/2

J,�

below the axis, the contributions from the

four regions (w 2 (0, r) [ (r, 1) [ (1, 1/r) [ (1/r,1)), which all project onto the interval

0 < z, z̄ < 1, are all proportional to the same block! The di↵erent regions are related to

each other by the same phases as in the positive-definite double discontinuity (2.16), times

absolute value of the measure, exactly like we physically hoped for! Finally, the contribution

from the cuts with w < 0 produce a similar result but with an extra factor (�1)J .

It would be nice to understand more deeply why the above solution exists at all, perhaps

by obtaining it through some integral representation. In the rest of this paper we concentrate

on its implications.

3.4 Final result

Our final result for the s-channel OPE coe�cients, based on (3.18), can thus be written as:

c(J,�) = ct(J,�) + (�1)Jcu(J,�) (3.19)

where each of the two channel contribution is an integral over a causal diamond:

ct(J,�) = J+�

4

R
1

0

dzdz̄ µ(z, z̄)G
�+1�d,J+d�1

(z, z̄) dDisc
⇥G(z, z̄)⇤ . (3.20)

The u-channel contribution cu is the same but with the integration ranging from �1 to 0

and the double discontinuity taken around z = 1. Equivalently, it is the same but with

operators 1 and 2 interchanged.

Equation (3.20) is the main result of this paper. It expresses the OPE coe�cients in the

s-channel (x
1

! x
2

), isolated on the left-hand-side, in terms of an integral over the correlator.

In this sense it “inverts” the OPE.

Most importantly for us, and in contrast with the Euclidean formula (3.5) which also

“inverts” the OPE, this CFT Froissart-Gribov formula is manifestly analytic in spin. Just like

the S-matrix Froissart-Gribov formula, the formula only works when Re J is large enough that

the arcs at infinity vanish. The bounds reviewed in section 2.3 guarantee this for J > 1 in any

– 20 –

J+�

4

Z 1

0
dzdz̄ µ(z, z̄)G�+1�d,J+d�1(z, z̄) dDisc

⇥
G(z, z̄)

⇤
ct(J,�) =

Result: CFT Froissart-Gribov formula



s-channel  
OPE coefficients

convergent 
t-channel sum

c(J,�) =

Z

⌃

⇥
Inverse block

⇤
⇥

⇥
dDiscG

⇤

Result: CFT Froissart-Gribov formula



s-channel  
OPE coefficients

convergent 
t-channel sum

block with  
j and Δ 

exchanged

converges for j>1 (Regge limit bounds)

c(J,�) =

Z

⌃

⇥
Inverse block

⇤
⇥

⇥
dDiscG

⇤

Result: CFT Froissart-Gribov formula



A (boring) test: 2D Ising

• Double discontinuity:  

• Integral against 2d (global) blocks: factorize

49

G(⇢, ⇢̄) =

����
1

(1� ⇢2)1/4

����
2

+

����
p
⇢

(1� ⇢2)1/4

����
2

B Example: 2D Ising model

There are two scalar primaries: � and ✏, odd and even under a Z
2

symmetry and of mass

dimension � = 1

8

and � = 1, respectively. We’ll consider the following correlators:

gA ⌘ g
����

=

����
1

(1� ⇢2)1/4

����
2

+

����
p
⇢

(1� ⇢2)1/4

����
2

, gB ⌘ g
��✏✏

=

����
1 + ⇢2

1� ⇢2

����
2

,

gC ⌘ g
�✏✏�

=

�����
⇢1/16(1 + 6⇢+ ⇢2)

(1� ⇢)2(1 + ⇢)1/8

�����

2

, gD ⌘ g
✏✏✏✏

=

����
1 + 14⇢2 + ⇢4

27/8(1� ⇢2)2

����
2

.

(B.1)

Note that gB and gC are di↵erent channels of the same correlator.

Consider first gA. To compute its double discontinuity, we need to treat ⇢, ⇢̄ as indepen-

dent variable and take ⇢ ! 1/⇢, either above or below the axis (see eq. ()), which gives

dDisc gA(⇢, ⇢̄) =
1� 1p

2

(
p
⇢+

p
⇢̄) +

p
⇢⇢̄

(1� ⇢2)1/4(1� ⇢̄2)1/4
. (B.2)

We note that this is positive for 0 < ⇢, ⇢̄ < 1, as required. The formula gives

cA
J,�

=

Z
1

0

d⇢d⇢̄µ(⇢, ⇢̄)G
��1,1+j

(⇢, ⇢̄)dDisc gA(⇢, ⇢̄) . (B.3)

where in the ⇢-variables the measure is
���1�⇢

2

4⇢

2

���
2

. Writing u = ⇢2 this can be expressed in

terms of following factorized integral:

f
p

(↵) ⌘
Z

1

0

du (4u)p+↵

8u
p
u

(1� u)3/4
2

F
1

�
1

2

, a
2

, a+1

2

, u
�
, (B.4)

giving

cA
J,�

= f
0

(J+�)f
0

(J+2��)�1

2
f
1/4

(J+�)f
0

(J+2��)�1

2
f
0

(J+�)f
1/4

(J+2��)+f
1/4

(J+�)f
1/4

(J+2��) .

(B.5)

It turns out that this can be expressed as an hypergeometric function:

f
p

(↵) = 2a�3+2p

�(7
4

)�(p+ ↵�2

4

)

�(p+ ↵+5

4

)
3

F
2

�
1

2

, ↵
2

, p+ ↵�2

4

; a+1

2

, p+ ↵+5

4

; 1
�
. (B.6)

The OPE coe�cients are then obtained as the residues of:

CA

J,�

0 = Res
�=�

0

 
cA
J,�

� �(��J

2

)4 tan(⇡��J

2

)

2⇡�(�� j � 1)�(�� j)
c
��1,J+1

!
. (B.7)

The first few residues, for example, give:

CA

0,1

=
1

4
, CA

2,2

=
1

64
, CA

4,4

=
9

40960
, CA

0,4

=
1

4096

CA

4,5

=
1

65536
, CA

6,6

=
35

3670016
CA

2,6

=
9

2621440
, CA

6,7

=
1

1310720
, . . .

(B.8)
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symmetry and of mass
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Note that gB and gC are di↵erent channels of the same correlator.

Consider first gA. To compute its double discontinuity, we need to treat ⇢, ⇢̄ as indepen-

dent variable and take ⇢ ! 1/⇢, either above or below the axis (see eq. ()), which gives

dDisc gA(⇢, ⇢̄) =
1� 1p

2
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p
⇢+
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(1� ⇢2)1/4(1� ⇢̄2)1/4
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We note that this is positive for 0 < ⇢, ⇢̄ < 1, as required. The formula gives
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where in the ⇢-variables the measure is
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. Writing u = ⇢2 this can be expressed in

terms of following factorized integral:
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It turns out that this can be expressed as an hypergeometric function:
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The OPE coe�cients are then obtained as the residues of:

CA

J,�

0 = Res
�=�

0
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J,�

� �(��J

2

)4 tan(⇡��J

2

)

2⇡�(�� j � 1)�(�� j)
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��1,J+1

!
. (B.7)

The first few residues, for example, give:

CA

0,1

=
1

4
, CA

2,2

=
1

64
, CA

4,4

=
9

40960
, CA

0,4

=
1

4096

CA
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=
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2,6

=
9
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=
1
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, . . .

(B.8)
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cj,� = f0(j+�)f0(j+2��)� 1
2f1/4(j +�)f0(j + 2��) + . . .



• Residues at all poles do match global OPE!*
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C0,1 =
1

4
, C2,2 =

1

64
, C4,4 =

9

40960
, C0,4 =

1

4096

C4,5 =
1

65536
, C6,6 =

35

3670016
C2,6 =

9

2621440
, C6,7 =

1

1310720
, . . .

**And: never trust Mathematica’s Residue on 3F2........

Cj,� = �Kj,�Res�0=�c(j,�
0)

(�1)m+1�(1 + a+ m
2 )�(1 + b+ m

2 )

m!(m+ 1)!�(a� m
2 )�(b�

m
2 )

⇥

⇥Kj+1+m,j+d�1c(j+1+m, j+d�1)

* Including (predicted) spurious poles for ��j�d = 0, 1, 2 . . .



Outline

1. Context: the conformal bootstrap

2. An inverse OPE formula:  
-Why operators are analytic in spin 
-building it up: SO(2),SO(3),SO(2,1)…SO(d,2)

3. Applications:  
-operators of large spin 
-CFTs dual to gravity: causality&bulk locality  

The aim of this talk will be to present a formula…

✔

✔



• Physical intuition: take two operators and 
put many derivatives between them:

• Should make them ‘far’ and decoupled:

• Actually, twist is more useful:

52

O1@
#O2

Large spin operators

O# =

(as in free theory!)

⌧ = �� j

⌧[12]n ⇡ ⌧1 + ⌧2 + 2n

�# ⇡ �1 +�2 + (# derivatives)



standard story: double-light-cone limit 

non-analytic behaviour in            needs large spin:
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Large spin expansions
large spin in s-channel  ← low twist in t-channel

⇒ Solve OPE in asymptotic series in 1/j

(z, z̄) ! (0, 1)

[Komargodski&Zhiboedov,  
Fitzpatrick,Kaplan,Poland&Simmons-Duffin,

Alday&Bissi&…,  
,Kaviraj,Sen,Sinha&…,

Alday,Bissi,Perlmutter&Aharony,…]

X

j

1

j↵
Fj(z̄) = (1� z̄)↵/2 + regular

(1� z̄)



• New: start instead from Froissart-Gribov formula:  

• Recall, OPE data encoded in ∆-poles:

• Large j+∆ and low twist pushes to (0,1) corner
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c(j,�) ⇠
Z 1

0
dzdz̄ zj��z̄j+�Fj+�(z̄)dDiscG(z, z̄)

z ! 0

c(j,�) =
1

j ��� ⌧
⇥

Z 1

0
dz̄ z̄j+�Fj+�(z̄)dDiscG⌧ (z̄)

if G(z, z̄) ! z⌧G⌧ (z̄),



• Analytic result for collinear integral of power:

• Earlier results reproduced by:  ‘expand cross-channel 
OPE in          and integrate termwise using (4.7)’

• Conceptually, no need to expand in 1/j  
(=why earlier expansions were asymptotic)
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[Alday&Zhiboedov ’15;
Simmons-Duffin ’16]

(4.7)

1�z̄
z̄

⇠ 1/h̄⌧ 0

Ia,b⌧ 0 (h̄) ⌘
Z 1

0

dz̄

z̄2
(1� z̄)a+bh̄kh̄(z̄) dDisc

2

4
✓
1� z̄

z̄

◆ ⌧0
2 �b

(z̄)�b

3

5

=
1

�
�
� ⌧ 0

2 � a
�
�
�
� ⌧ 0

2 + b
� ⇥

�
�
h̄� a

�
�
�
h̄+ b

�

�
�
2h̄� 1

� ⇥
�
�
h̄� ⌧ 0

2 � 1
�

�
�
h̄+ ⌧ 0

2 + 1
� .

(h̄ = j+�
2 )
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where we used equation (5.48) for the Jacobian @h
@`

that relates f��[��]
0

to ���[��]
0

. The

actual operator dimensions are determined by solving h� 2h� � �(h) = 0, 2, 4, . . . .

A comparison between the above formula and numerics for ⌧
[��]

0

= 2��+2�
[��]

0

is shown
in figure 7. The discrepancy between analytics and numerics is 3 ⇥ 10�3 and 5 ⇥ 10�4 for
spins ` = 2, 4, respectively, and ⇠ 5 ⇥ 10�5 for ` > 4. Including additional higher-twist
operators (primaries or descendants) in (6.1) and (6.2) does not improve the fit for low
spins, and barely a↵ects it for high spins.

10 20 30 40
h

1.00

1.01

1.02

1.03

1.04
τ

τ[σσ]0(h)

Figure 7: A comparison between the analytical prediction (6.5) (blue curve) and numerical
data (blue dots) for ⌧

[��]
0

. The two agree with accuracy 3 ⇥ 10�3 and 5 ⇥ 10�4 for spins
` = 2, 4, respectively, and ⇠ 5⇥ 10�5 for ` > 4. The grey dashed line is the asymptotic value
⌧ = 2��. The curve (2.3) from [1] looks essentially the same.

6.1.1 Di↵erences from [1]

Let us comment briefly on the (inconsequential) di↵erences between the above calculation
and the series (2.3) computed in [1]. Firstly, we have not included descendants of ✏, T ,

namely terms of the form W (0)����
O,m and V (0)����

O,m with m � 1, whereas [1] included descen-
dants at first order in z. This is because it doesn’t make sense to include level-1 descendants
of ✏, T without also including the double-twist operators [✏T ]

0

, [TT ]
0

, which contribute at
the same order in the large-h expansion. Also, because we organize everything as a series in
y instead of z, the contributions of descendants will di↵er somewhat (though the sum over
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[Plot from Simmons-Duffin ’16;  
see Alday&Zhiboedov ’15]

stress 
tensor

Asymptotic series in 3D Ising

j +�

2



What’s new:

• Asymptotic expansion ⇒ convergent sum 
(no need to expand in               )

• Control over individual spins, not only 
averages over many spins (‘no stick-out’)

• Can try to bound errors
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(1� z̄)/z̄



AdS/CFT:  
Why dDisc is awesome

In theories with large-N factorization, saturated by 
single-traces

Leading connected order
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G
conn

⇠
X

single trace

cj |1� z|�j +
X

double trace

ci|1� z|�
(1)
i /N

⇠ log(1� z̄)

single+double 
traces

single  
trace

cj,� ⇠
Z

dDiscG



Theories with gravity dual have few light single-traces: 
the graviton (T𝜇𝜈), a few scalars,… up to ∆gap

Heavy’s in cross-channel can be bounded:✓
1�p

⇢

1 +
p
⇢

◆�gap

 e�2
p
⇢�gap

dDiscG

z ⇠ z̄
1⇠ 1/�2

gap

0

1

⇠ 1/N2
c

light
(known)

unknown
(heavy’s)



s-channel OPE coefficients ~ weighted areas 

Area itself is (inverse) stress-tensor two-point function
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��c(j, d
2 + i⌫)heavy

��  1

cT

#

(�2
gap)

j�2

/ 1

(�2
gap)

j�1

c(j, d
2 + i⌫) ⇠

Z 1

0
d(zz̄)(zz̄)j/2�1e�(

p
z+

p
z̄)�gap ⇥

Z
d(z/z̄)(. . .)

⇒



• AdS/CFT expectation: EFT coefficients 
suppressed by dimension:            down by

• What this shows: down by spin 

• Same as ‘causality bound’ conjectured recently 
(equivalent to existence of dispersion relation in the bulk)
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“
�1

s��2
gap

” 1

�2
gap

+
s

�4
gap

+ . . .

(@2k)�4 1/�2k
gap

1/�2(j�2)
gap

[Maldacena,Simmons-Duffin&Zhiboedov ’15]



• What was known from CFT:  
Solutions to crossing symmetry in a large-N 
CFT with large gap = Witten diagrams 
 
 
For given light spectrum, solutions are 
ambiguous by contact interactions 

• What we learn:  
analyticity in spin (good Regge behavior) singles 
out a unique, ‘causal’ solution, up to errors:

• key step toward AdS/CFT from CFT!
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< 1/(�2
gap)

j�2

[Heemskerk,Penedones,  
Polchinski& Sully ’09]



(Spin versus dimension)
• Some sporadic few-derivative interactions remain 

unconstrained

• Consider an AdS interaction with flat-space limit:

• This has spin two in the Regge limit in all channels:

• All interactions with more derivative, however,  
must have small coefficients
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stu

stu = st(s+ t) ⇠ s2 ⌘ sj (s ! 1, tfixed)



• Novel formula:  (Froissart-Gribov-like)

• Valid in any unitary CFTD.  Regge behavior ensures 
convergence; ounds derivative interactions in AdS

• Opens the way for AdS/CFT beyond gravity

• Outlook:  
-Numerical bootstrap: bound errors using 
 convergent 1/j expansion? 
-Higher points?

Conclusion

& much more!

s-channel t-channel
c(j,�) ⌘

Z 1

0
dzdz̄ g�,j dDiscG



Interpretation of Qj

• Legendre polys Pj: finite dim representations,  
with Jz = -j…j:

• Qj functions associated with infinite-dim highest-
weight reps:

• Qj = second solution to Legendre diff eq.
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Ex: P4(cos ✓) / 35e4i✓ + 20e2i✓ + 18 + 20e�2i✓
+ 35e�4i✓

Qj(cosh ⌘) = e�(j+1)⌘
+#e�(j+3)⌘

+#

0e�(j+5)⌘
+ . . .


